Class 9th Mathematics Heron’s Formula Case Studies

Case Study 1: Garden Triangular Plot

A farmer owns a triangular garden plot with sides 13 m, 14 m, and 15 m. He wants to calculate its area to know how much grass seed to buy. He decides to apply Heron’s formula.

Questions:

  1. Semi-perimeter, ss = ?
    (a) 21 (b) 20 (c) 22 (d) 19
    Answer: (a)
  2. Expression under root = ?
    (a) 21×8×7×6 (b) 21×7×6×5 (c) 21×8×6×7 (d) none
    Answer: (a)
  3. Area = ?
    (a) 84 m² (b) 90 m² (c) 100 m² (d) 120 m²
    Answer: (a)
  4. Formula used = ?
    (a) Pythagoras theorem (b) Heron’s formula (c) Area = ½ × base × height (d) none
    Answer: (b)
  5. Shape of garden = ?
    (a) quadrilateral (b) triangle (c) circle (d) trapezium
    Answer: (b)

Case Study 2: Playground Division

A school divides a quadrilateral playground into two triangles along a diagonal. Triangles are ∆ABC (sides 7, 8, 9 m) and ∆ADC (sides 6, 8, 10 m).

Questions:

  1. To find total area of quadrilateral, we:
    (a) add areas of triangles (b) multiply areas (c) subtract (d) none
    Answer: (a)
  2. For ∆ABC, semi-perimeter = ?
    (a) 12 (b) 13 (c) 14 (d) 15
    Answer: (a)
  3. For ∆ADC, semi-perimeter = ?
    (a) 12 (b) 13 (c) 14 (d) 15
    Answer: (b)
  4. Formula applied in each triangle = ?
    (a) Heron’s formula (b) Pythagoras (c) mid-point theorem (d) none
    Answer: (a)
  5. This method is useful for:
    (a) irregular plots (b) only squares (c) only rectangles (d) none
    Answer: (a)

Case Study 3: Flag Decoration

During Independence Day, a triangular flag with sides 9 m, 12 m, and 15 m was made.

Questions:

  1. Semi-perimeter = ?
    (a) 16 (b) 18 (c) 20 (d) 15
    Answer: (b)
  2. This triangle is also a:
    (a) right-angled triangle (b) isosceles (c) equilateral (d) none
    Answer: (a)
  3. Area using Heron’s formula = ?
    (a) 54 (b) 72 (c) 90 (d) 108
    Answer: (c)
  4. Area using ½ × base × height = ?
    (a) 90 (b) 100 (c) 120 (d) 108
    Answer: (a)
  5. Which method is easier here?
    (a) Heron’s formula (b) ½ × base × height (c) both give same answer (d) none
    Answer: (c)

Case Study 4: Triangular Park

A triangular park has sides 7 m, 24 m, and 25 m. The municipal corporation wants to cover it with grass.

Questions:

  1. Type of triangle = ?
    (a) right-angled (b) equilateral (c) isosceles (d) scalene
    Answer: (a)
  2. Semi-perimeter = ?
    (a) 28 (b) 27 (c) 26 (d) 25
    Answer: (b)
  3. Area using Heron’s formula = ?
    (a) 84 (b) 72 (c) 60 (d) 100
    Answer: (a)
  4. Area using ½ × base × height = ?
    (a) 84 (b) 72 (c) 60 (d) 100
    Answer: (a)
  5. Which property verified?
    (a) Heron’s formula works for right triangles too (b) Pythagoras only (c) none
    Answer: (a)

Case Study 5: Hall Roof

The triangular roof of a hall has sides 8 m, 15 m, and 17 m. The architect wants to paint it.

Questions:

  1. Semi-perimeter = ?
    (a) 19 (b) 20 (c) 21 (d) 22
    Answer: (b)
  2. Type of triangle = ?
    (a) right-angled (b) isosceles (c) equilateral (d) none
    Answer: (a)
  3. Area = ?
    (a) 60 (b) 65 (c) 70 (d) 72
    Answer: (a)
  4. Formula used = ?
    (a) Heron’s formula (b) ½ × base × height (c) both (d) none
    Answer: (c)
  5. Roof shape is:
    (a) triangular (b) quadrilateral (c) polygon (d) none
    Answer: (a)

Case Study 6: Farming Land

A triangular field has sides 30 m, 40 m, and 50 m. A farmer wants to calculate area for crop planning.

Questions:

  1. Semi-perimeter = ?
    (a) 60 (b) 50 (c) 70 (d) 80
    Answer: (a)
  2. This triangle is:
    (a) right-angled (b) scalene (c) equilateral (d) none
    Answer: (a)
  3. Area = ?
    (a) 600 (b) 650 (c) 700 (d) 750
    Answer: (c)
  4. Area using ½ × base × height = ?
    (a) 600 (b) 650 (c) 700 (d) 750
    Answer: (c)
  5. Heron’s formula is useful for:
    (a) all triangles (b) only right-angled triangles (c) only equilateral triangles (d) none
    Answer: (a)

Case Study 7: Playground Boundary

A triangular playground has sides 10 m, 10 m, and 12 m. Students want to calculate area to install synthetic grass.

Questions:

  1. Triangle type = ?
    (a) isosceles (b) scalene (c) equilateral (d) none
    Answer: (a)
  2. Semi-perimeter = ?
    (a) 15 (b) 16 (c) 17 (d) 18
    Answer: (b)
  3. Area = ?
    (a) 40 (b) 48 (c) 60 (d) 72
    Answer: (b)
  4. Heron’s formula works for:
    (a) scalene only (b) isosceles only (c) all triangles (d) none
    Answer: (c)
  5. Which side is repeated?
    (a) 10 (b) 12 (c) 8 (d) none
    Answer: (a)

Case Study 8: Road Triangle

Three roads form a triangle with sides 9 km, 40 km, and 41 km.

Questions:

  1. Semi-perimeter = ?
    (a) 40 (b) 44 (c) 45 (d) 46
    Answer: (b)
  2. Type of triangle = ?
    (a) right-angled (b) isosceles (c) equilateral (d) none
    Answer: (a)
  3. Area = ?
    (a) 180 (b) 160 (c) 150 (d) 200
    Answer: (a)
  4. This problem shows application in:
    (a) construction (b) road planning (c) agriculture (d) all
    Answer: (d)
  5. Formula used = ?
    (a) Heron’s formula (b) ½ × base × height (c) both (d) none
    Answer: (c)

Case Study 9: Cinema Screen

A triangular cinema screen has sides 7 m, 24 m, 25 m.

Questions:

  1. Type of triangle = ?
    (a) right-angled (b) scalene (c) isosceles (d) none
    Answer: (a)
  2. Semi-perimeter = ?
    (a) 28 (b) 27 (c) 26 (d) none
    Answer: (b)
  3. Area = ?
    (a) 70 (b) 80 (c) 84 (d) 90
    Answer: (c)
  4. Method used = ?
    (a) Heron’s formula (b) ½ × base × height (c) both (d) none
    Answer: (c)
  5. Heron’s formula helps where:
    (a) height not known (b) base not known (c) only sides known (d) all
    Answer: (d)

Case Study 10: Survey Land

A surveyor measures a triangular land with sides 11 m, 13 m, and 20 m.

Questions:

  1. Semi-perimeter = ?
    (a) 20 (b) 21 (c) 22 (d) 23
    Answer: (b)
  2. Expression inside root = ?
    (a) 21×10×8×2 (b) 21×11×7×3 (c) 21×9×8×4 (d) none
    Answer: (a)
  3. Area = ?
    (a) 36√10 (b) 40√10 (c) 42√10 (d) none
    Answer: (a)
  4. This application is useful for:
    (a) surveyors (b) architects (c) farmers (d) all
    Answer: (d)
  5. Formula always applicable for:
    (a) only equilateral (b) only isosceles (c) all triangles (d) none
    Answer: (c)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top