Class 9th Mathematics Circles Case Studies

Case Study 1: Playground Circle

A circular playground has a chord AB of length 12 m. The perpendicular from the center O to AB meets it at point M, where OM = 4 m.

Questions:

  1. In a circle, perpendicular from center to chord:
    (a) bisects the chord (b) doubles the chord (c) tangent to chord (d) none
    Answer: (a)
  2. If AB = 12, then AM = ?
    (a) 4 (b) 5 (c) 6 (d) 12
    Answer: (c)
  3. Using Pythagoras, OA² = AM² + OM². OA = ?
    (a) 5√2 (b) √52 (c) √52 = 2√13 (d) none
    Answer: (c)
  4. OA is:
    (a) radius (b) diameter (c) chord (d) tangent
    Answer: (a)
  5. Length of radius = ?
    (a) 6 (b) 4 (c) 2√13 (d) 12
    Answer: (c)

Case Study 2: Circular Fountain

In a park, there is a circular fountain with diameter 14 m. A student walked halfway around it, subtending an angle at the center.

Questions:

  1. Diameter = ?
    (a) 7 (b) 14 (c) 28 (d) none
    Answer: (b)
  2. Radius = ?
    (a) 7 (b) 14 (c) 21 (d) none
    Answer: (a)
  3. Semicircle subtends an angle at the center = ?
    (a) 90° (b) 120° (c) 180° (d) 60°
    Answer: (c)
  4. At the circumference, semicircle subtends angle = ?
    (a) 180° (b) 120° (c) 90° (d) 60°
    Answer: (c)
  5. Angle in semicircle is:
    (a) right angle (b) acute angle (c) obtuse angle (d) none
    Answer: (a)

Case Study 3: Clock Design

A clock is circular. At 3 o’clock, hands of the clock subtend 90° at the center.

Questions:

  1. Angle subtended by arc of 3 hours at center = ?
    (a) 30° (b) 60° (c) 90° (d) 180°
    Answer: (c)
  2. Each hour subtends at center = ?
    (a) 15° (b) 30° (c) 45° (d) 60°
    Answer: (b)
  3. If arc subtends 90° at center, then at circumference it subtends = ?
    (a) 90° (b) 45° (c) 60° (d) 30°
    Answer: (b)
  4. This shows:
    (a) angle at center = 2 × angle at circumference (b) equal angles (c) tangent theorem (d) none
    Answer: (a)
  5. Shape of clock is:
    (a) polygon (b) circle (c) quadrilateral (d) none
    Answer: (b)

Case Study 4: Cyclic Quadrilateral

A quadrilateral ABCD is inscribed in a circle. ∠A = 100°, ∠C = ?

Questions:

  1. Opposite angles of cyclic quadrilateral are:
    (a) supplementary (b) equal (c) complementary (d) none
    Answer: (a)
  2. If ∠A = 100°, ∠C = ?
    (a) 80° (b) 100° (c) 90° (d) 120°
    Answer: (a)
  3. If ∠B = 85°, then ∠D = ?
    (a) 95° (b) 105° (c) 85° (d) 75°
    Answer: (b)
  4. Property used = ?
    (a) angle sum property (b) cyclic quadrilateral theorem (c) Pythagoras (d) none
    Answer: (b)
  5. Sum of opposite ∠ = ?
    (a) 100° (b) 180° (c) 90° (d) none
    Answer: (b)

Case Study 5: Wheel Rim (Equal Chords)

In a wheel rim, two equal chords AB and CD are drawn.

Questions:

  1. Equal chords in a circle are equidistant from:
    (a) diameter (b) tangent (c) center (d) none
    Answer: (c)
  2. If AB = CD, then distance OA = distance OC.
    True / False?
    Answer: True
  3. If OA = 5 and OC = 5, then radius is same for both.
    Answer: True
  4. Which theorem is used?
    (a) Equal chords → equal distances from center (b) Converse of above (c) both (d) none
    Answer: (c)
  5. Wheel rim is:
    (a) circle (b) polygon (c) quadrilateral (d) none
    Answer: (a)

Case Study 6: Park Pathway (Arc Angles)

In a circular park, arc PQ subtends ∠POQ = 100° at center.

Questions:

  1. At circumference, angle subtended = ?
    (a) 100° (b) 50° (c) 200° (d) none
    Answer: (b)
  2. Relation between center angle and circumference angle = ?
    (a) equal (b) double (c) half (d) none
    Answer: (b)
  3. If another point R on circumference also subtends arc PQ, ∠PRQ = ?
    (a) 50° (b) 100° (c) 200° (d) none
    Answer: (a)
  4. This property is known as:
    (a) angle in same segment theorem (b) Pythagoras (c) tangent theorem (d) none
    Answer: (a)
  5. Circle’s radius remains:
    (a) fixed (b) changing (c) variable (d) none
    Answer: (a)

Case Study 7: Tangent to Circle

A tangent touches circle at point A. Center O joins OA.

Questions:

  1. OA ⟂ tangent at A. True/False?
    Answer: True
  2. Angle between radius and tangent = ?
    (a) 30° (b) 45° (c) 60° (d) 90°
    Answer: (d)
  3. Tangent to circle touches it at:
    (a) one point (b) two points (c) infinite points (d) none
    Answer: (a)
  4. Number of tangents through a point on circle = ?
    (a) 0 (b) 1 (c) 2 (d) infinite
    Answer: (b)
  5. If radius = 7, tangent length from point of contact to center = ?
    (a) 7 (b) 14 (c) 49 (d) none
    Answer: (a)

Case Study 8: Circular Pond

A circular pond has a bridge AB across it through the center.

Questions:

  1. AB passing through center is:
    (a) chord (b) radius (c) diameter (d) tangent
    Answer: (c)
  2. Diameter = 2 × radius. True/False?
    Answer: True
  3. If AB = 14, radius = ?
    (a) 7 (b) 14 (c) 28 (d) none
    Answer: (a)
  4. Diameter always passes through:
    (a) circumference only (b) center (c) tangent (d) none
    Answer: (b)
  5. Largest chord of circle = ?
    (a) radius (b) tangent (c) diameter (d) none
    Answer: (c)

Case Study 9: Playground Track

Four students ran around a circular track, starting at A and meeting again after one full round.

Questions:

  1. Their path is along the:
    (a) circumference (b) diameter (c) radius (d) tangent
    Answer: (a)
  2. Circumference = ?
    (a) 2πr (b) πr² (c) 2r (d) none
    Answer: (a)
  3. If r = 7, circumference = ?
    (a) 22 (b) 44 (c) 44 cm (d) 44 m
    Answer: (d)
  4. Track shape = ?
    (a) polygon (b) circle (c) ellipse (d) rectangle
    Answer: (b)
  5. Formula for area of circle = ?
    (a) πr² (b) 2πr (c) 2r (d) none
    Answer: (a)

Case Study 10: Street Light Pole

A circular lamp is fixed with wires forming cyclic quadrilateral around it.

Questions:

  1. Quadrilateral inscribed in circle is:
    (a) trapezium (b) cyclic quadrilateral (c) parallelogram (d) none
    Answer: (b)
  2. Opposite angles of cyclic quadrilateral are:
    (a) supplementary (b) equal (c) complementary (d) none
    Answer: (a)
  3. If ∠A = 110°, ∠C = ?
    (a) 70° (b) 80° (c) 90° (d) none
    Answer: (a)
  4. If ∠B = 95°, ∠D = ?
    (a) 85° (b) 90° (c) 95° (d) none
    Answer: (a)
  5. Sum of opposite angles = ?
    (a) 100° (b) 180° (c) 270° (d) none
    Answer: (b)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top