Class 9th Mathematics Number Systems Case Study


Case Study 1: Exponents and Divisibility

Himanshu prepared a project on real numbers, where he explained exponential laws and divisibility rules.

Questions:

  1. For what value of n, 4ⁿ ends in 0?
    (a) 10 (b) when n is even (c) when n is odd (d) no value of n
    Answer: (d)
  2. If a is rational and n > 1, then aⁿ is:
    (a) irrational (b) rational (c) always integer (d) only when n=0
    Answer: (b)
  3. If x, y are odd integers, then x² + y² is:
    (a) even (b) not divisible by 4 (c) odd (d) both (a) and (b)
    Answer: (d)
  4. “One of every three consecutive integers is divisible by 3.”
    (a) always true (b) always false (c) sometimes true (d) none
    Answer: (a)
  5. If n is odd, n² – 1 is divisible by:
    (a) 22 (b) 55 (c) 8 (d) 88
    Answer: (c)

Case Study 2: Representation of Irrational Numbers

Ravi used the Pythagoras theorem to represent √2 and √3 on a number line.

Questions:

  1. The identity used is:
    (a) a²+b²=c² (b) (a+b)² (c) (a−b)² (d) a²−b²
    Answer: (a)
  2. √2 belongs to:
    (a) integers (b) irrationals (c) rationals (d) whole numbers
    Answer: (b)
  3. Which pair are both irrational?
    (a) √2, √3 (b) √4, √3 (c) √9, √16 (d) √25, √49
    Answer: (a)
  4. Approx value of √2 is:
    (a) 1.2 (b) 1.3 (c) 1.4 (d) 1.5
    Answer: (c)
  5. √3 lies between:
    (a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) none
    Answer: (b)

Case Study 3: Decimal Expansions

Students got decimals: 3.142857142857… and 0.1010010001…

Questions:

  1. 3.142857… is:
    (a) terminating (b) non-terminating repeating (c) non-terminating non-repeating (d) none
    Answer: (b)
  2. 0.1010010001… is:
    (a) rational (b) irrational (c) integer (d) terminating
    Answer: (b)
  3. Which fraction gives terminating decimal?
    (a) 7/25 (b) 1/3 (c) 1/11 (d) 1/7
    Answer: (a)
  4. Rational decimals are:
    (a) terminating (b) repeating (c) either terminating or repeating (d) non-repeating
    Answer: (c)
  5. Which is irrational?
    (a) 22/7 (b) π (c) 3.5 (d) 7/2
    Answer: (b)

Case Study 4: Rationalisation

Vimal simplified √3/(√5+√3) by multiplying with (√5−√3).

Questions:

  1. Rationalisation makes denominator:
    (a) integer (b) irrational (c) decimal (d) fraction
    Answer: (a)
  2. (√5+√3)(√5−√3) = ?
    (a) 5−3 (b) 25−9 (c) 8 (d) √2
    Answer: (a)
  3. Identity used:
    (a) a²−b² (b) (a+b)² (c) (a−b)² (d) (a+b)(a+b)
    Answer: (a)
  4. Rationalisation of √7/(√7−√2) = ?
    (a) (√7+√2)/5 (b) (√7+√2)/7 (c) √7+√2 (d) none
    Answer: (a)
  5. Rationalisation is used for:
    (a) removing roots from denominator (b) making numerator rational (c) converting to decimal (d) none
    Answer: (a)

Case Study 5: Square Roots in Real Life

A builder constructed a square garden of 50 m² area.

Questions:

  1. Side length = ?
    (a) √50 (b) √25 (c) √100 (d) √7
    Answer: (a)
  2. √50 simplified = ?
    (a) 5√2 (b) 10√2 (c) 25√2 (d) none
    Answer: (a)
  3. √50 is:
    (a) rational (b) irrational (c) integer (d) natural
    Answer: (b)
  4. √50 lies between:
    (a) 7 and 8 (b) 6 and 7 (c) 8 and 9 (d) 9 and 10
    Answer: (a)
  5. Approximate √50 = ?
    (a) 6.9 (b) 7.07 (c) 7.5 (d) 8
    Answer: (b)

Case Study 6: Laws of Exponents

A student solved (2³×2⁴)÷2² = 2⁵.

Questions:

  1. Law used:
    (a) aᵐ×aⁿ (b) aᵐ/aⁿ (c) (aᵐ)ⁿ (d) both (a)&(b)
    Answer: (d)
  2. Simplify: (x²)³.
    (a) x⁵ (b) x⁶ (c) x⁷ (d) x⁸
    Answer: (b)
  3. 9^(3/2) = ?
    (a) 9 (b) 27 (c) 81 (d) none
    Answer: (b)
  4. If 2ˣ = 32, x=?
    (a) 4 (b) 5 (c) 6 (d) 3
    Answer: (b)
  5. 8^(2/3) = ?
    (a) 2 (b) 4 (c) 8 (d) 16
    Answer: (b)

Case Study 7: Divisibility

Students tested 735 for divisibility by 3, 5, and 11.

Questions:

  1. Divisible by 3 because:
    (a) last digit 0 (b) last digit 5 (c) digit sum divisible by 3 (d) none
    Answer: (c)
  2. Divisible by 5 because:
    (a) last digit 0 or 5 (b) sum divisible by 5 (c) alt sum divisible by 11 (d) none
    Answer: (a)
  3. For 11, check:
    (a) sum of digits (b) alternating sum (c) last 3 digits (d) last digit
    Answer: (b)
  4. 735 ÷ 11 = ?
    (a) integer (b) not divisible (c) remainder 2 (d) none
    Answer: (b)
  5. Divisible by both 2 & 5?
    (a) 15 (b) 20 (c) 25 (d) 35
    Answer: (b)

Case Study 8: Terminating & Non-Terminating Fractions

Teacher wrote 1/2, 1/3, 1/8, 1/11.

Questions:

  1. 1/8 = ?
    (a) 0.25 (b) 0.125 (c) 0.333… (d) 0.5
    Answer: (b)
  2. 1/3 = ?
    (a) 0.25 (b) 0.5 (c) 0.333… (d) 0.125
    Answer: (c)
  3. Which is terminating?
    (a) 1/8 (b) 1/3 (c) 1/11 (d) 1/7
    Answer: (a)
  4. Which is repeating decimal?
    (a) 1/11 (b) 1/8 (c) 1/2 (d) 1/4
    Answer: (a)
  5. Which is irrational?
    (a) 1/3 (b) √5 (c) 1/8 (d) 1/2
    Answer: (b)

Case Study 9: Surds & Irrationals

Surveyor used √7 and √11 in measurement.

Questions:

  1. √7 and √11 are:
    (a) rationals (b) irrationals (c) integers (d) whole numbers
    Answer: (b)
  2. √11 lies between:
    (a) 2 and 3 (b) 3 and 4 (c) 4 and 5 (d) 5 and 6
    Answer: (c)
  3. Approx √7 = ?
    (a) 2.6 (b) 2.65 (c) 2.7 (d) 2.8
    Answer: (c)
  4. √16 is:
    (a) rational (b) irrational (c) prime (d) none
    Answer: (a)
  5. Which is irrational?
    (a) √49 (b) √50 (c) √64 (d) √81
    Answer: (b)

Case Study 10: Properties of Real Numbers

Students checked closure, commutative, associative properties.

Questions:

  1. Rational + Rational = ?
    (a) rational (b) irrational (c) integer (d) natural
    Answer: (a)
  2. Rational × Rational = ?
    (a) rational (b) irrational (c) prime (d) none
    Answer: (a)
  3. Addition is commutative for:
    (a) natural (b) integers (c) rationals (d) all reals
    Answer: (d)
  4. Subtraction is:
    (a) commutative (b) not commutative (c) associative (d) distributive
    Answer: (b)
  5. Multiplication is associative for:
    (a) natural (b) integers (c) rationals (d) all of these
    Answer: (d)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top