Class 9th Mathematics Linear Equation in Two Variables Case Studies



Case Study 1: Cost of Pens and Pencils

A shopkeeper sells pens at ₹10 each and pencils at ₹5 each. If a customer buys pens worth ₹x and pencils worth ₹y, then the total cost can be expressed as 10x + 5y. To find the possible purchases for ₹50, the situation can be represented by the linear equation 10x + 5y = 50.

Questions:

  1. The given equation is of the form:
    (a) ax + by = c (b) ax + by + c = 0 (c) y=mx+c (d) none
    Answer: (a)
  2. Number of solutions of the equation is:
    (a) 1 (b) 2 (c) infinite (d) none
    Answer: (c)
  3. If x=2, then y=?
    (a) 5 (b) 6 (c) 3 (d) 10
    Answer: (a)
  4. If y=4, then x=?
    (a) 1 (b) 2 (c) 3 (d) 4
    Answer: (c)
  5. Graph of the equation is a:
    (a) line (b) parabola (c) circle (d) none
    Answer: (a)

Case Study 2: School Bus Fare

A school bus charges ₹20 per student for a local trip and ₹30 per teacher. If x students and y teachers travel, total cost is given by 20x+30y. For a trip costing ₹300, we get the equation 20x+30y=300.

Questions:

  1. The equation is:
    (a) linear in one variable (b) linear in two variables (c) quadratic (d) cubic
    Answer: (b)
  2. If x=10, y=?
    (a) 0 (b) 2 (c) 3 (d) 5
    Answer: (c)
  3. If y=5, then x=?
    (a) 0 (b) 5 (c) 10 (d) none
    Answer: (a)
  4. The graph of this equation is:
    (a) line through origin (b) line not through origin (c) parabola (d) none
    Answer: (b)
  5. The intercepts are:
    (a) (15,0),(0,10) (b) (0,15),(10,0) (c) (0,10),(15,0) (d) (0,5),(5,0)
    Answer: (c)

Case Study 3: Railway Ticket Problem

The cost of 1 first-class ticket is ₹100 and of 1 sleeper ticket is ₹60. If a person buys x first-class and y sleeper tickets for ₹1000, the equation is 100x+60y=1000.

Questions:

  1. General form of linear equation in two variables is:
    (a) ax+by+c=0 (b) ax+by=c (c) y=mx+c (d) none
    Answer: (a)
  2. If x=4, then y=?
    (a) 10 (b) 5 (c) 20 (d) none
    Answer: (b)
  3. If y=10, then x=?
    (a) 2 (b) 3 (c) 4 (d) none
    Answer: (a)
  4. Equation has:
    (a) one solution (b) two solutions (c) infinitely many solutions (d) no solution
    Answer: (c)
  5. Graph of solutions is:
    (a) straight line (b) parabola (c) ellipse (d) circle
    Answer: (a)

Case Study 4: Fruit Seller

A fruit seller sells apples at ₹40/kg and oranges at ₹50/kg. If he sells x kg apples and y kg oranges for a total of ₹500, the equation is 40x+50y=500.

Questions:

  1. The equation 40x+50y=500 can be simplified to:
    (a) 4x+5y=50 (b) 8x+5y=100 (c) x+y=10 (d) none
    Answer: (a)
  2. If x=5, then y=?
    (a) 2 (b) 5 (c) 6 (d) 10
    Answer: (a)
  3. If y=6, then x=?
    (a) 2.5 (b) 5 (c) 10 (d) none
    Answer: (a)
  4. The line intersects axes at:
    (a) (0,10),(12.5,0) (b) (0,12.5),(10,0) (c) (0,5),(10,0) (d) none
    Answer: (b)
  5. Graph of this equation passes through:
    (a) (5,2) (b) (6,5) (c) (10,10) (d) none
    Answer: (a)

Case Study 5: Work and Wages

A worker earns ₹500 per day and a supervisor earns ₹700 per day. If a company hires x workers and y supervisors for a total cost of ₹7000, then 500x+700y=7000.

Questions:

  1. The given equation is:
    (a) quadratic (b) linear in two variables (c) cubic (d) none
    Answer: (b)
  2. If x=10, y=?
    (a) 0 (b) 2 (c) 5 (d) none
    Answer: (b)
  3. If y=5, x=?
    (a) 0 (b) 5 (c) 10 (d) none
    Answer: (a)
  4. Equation reduces to:
    (a) 5x+7y=70 (b) 50x+70y=7000 (c) x+y=10 (d) none
    Answer: (a)
  5. Graph intersects axes at:
    (a) (14,0),(0,10) (b) (0,14),(10,0) (c) (0,10),(14,0) (d) none
    Answer: (c)

Case Study 6: Family Budget

A family spends ₹2000 on food and ₹3000 on clothes every month. If in some month food costs ₹x and clothes cost ₹y with a total of ₹10,000, then x+y=10,000.

Questions:

  1. This is an equation in:
    (a) one variable (b) two variables (c) three variables (d) none
    Answer: (b)
  2. If x=4000, y=?
    (a) 4000 (b) 5000 (c) 6000 (d) none
    Answer: (b)
  3. If y=2000, x=?
    (a) 6000 (b) 8000 (c) 9000 (d) none
    Answer: (b)
  4. Equation graph:
    (a) line parallel to x-axis (b) line parallel to y-axis (c) slant line (d) none
    Answer: (c)
  5. General solution is:
    (a) infinite pairs (x,y) (b) unique pair (c) none (d) only integers
    Answer: (a)

Case Study 7: Age Problem

Sum of ages of father and son is 60 years. Let father’s age be x and son’s age be y. Then equation is x+y=60.

Questions:

  1. General form is:
    (a) ax+by+c=0 (b) ax+by=c (c) y=mx+c (d) none
    Answer: (a)
  2. If father is 40, son is:
    (a) 10 (b) 15 (c) 20 (d) none
    Answer: (c)
  3. If son is 18, father is:
    (a) 38 (b) 40 (c) 42 (d) none
    Answer: (c)
  4. One solution pair is:
    (a) (40,20) (b) (35,25) (c) (50,10) (d) all of these
    Answer: (d)
  5. Graph intercepts:
    (a) (60,0),(0,60) (b) (0,30),(30,0) (c) (0,60),(60,0) (d) none
    Answer: (a)

Case Study 8: Business Profit

Profit on selling a chair is ₹150 and on a table is ₹250. If shopkeeper sells x chairs and y tables with total profit ₹5000, then 150x+250y=5000.

Questions:

  1. Equation simplified is:
    (a) 3x+5y=100 (b) 15x+25y=500 (c) x+y=10 (d) none
    Answer: (a)
  2. If x=10, y=?
    (a) 10 (b) 15 (c) 20 (d) none
    Answer: (a)
  3. If y=20, x=?
    (a) 10 (b) 20 (c) 25 (d) none
    Answer: (a)
  4. Equation has:
    (a) finite solutions (b) infinite solutions (c) no solution (d) none
    Answer: (b)
  5. Graph intercepts:
    (a) (100,0),(0,20) (b) (0,100),(20,0) (c) (20,0),(0,100) (d) none
    Answer: (c)

Case Study 9: Exam Scores

A student scores 2 marks for each correct answer and loses 1 mark for each wrong answer. If x correct and y wrong answers give total 20 marks, then 2x−y=20.

Questions:

  1. Equation type:
    (a) linear in one variable (b) linear in two variables (c) quadratic (d) none
    Answer: (b)
  2. If x=15, y=?
    (a) 10 (b) 5 (c) 20 (d) none
    Answer: (b)
  3. If y=10, x=?
    (a) 15 (b) 20 (c) 10 (d) none
    Answer: (a)
  4. Number of solutions:
    (a) one (b) two (c) infinitely many (d) none
    Answer: (c)
  5. Graph shape:
    (a) line (b) parabola (c) circle (d) none
    Answer: (a)

Case Study 10: Mixture Problem

A milkman mixes milk at ₹50/litre and water at ₹0/litre. If mixture has x litres milk and y litres water costing ₹200, then 50x+0y=200.

Questions:

  1. Simplified equation is:
    (a) 50x=200 (b) x=4 (c) both (a)&(b) (d) none
    Answer: (c)
  2. Value of x=?
    (a) 2 (b) 3 (c) 4 (d) 5
    Answer: (c)
  3. Value of y can be:
    (a) any real number (b) any non-negative integer (c) zero only (d) none
    Answer: (b)
  4. Equation is parallel to:
    (a) x-axis (b) y-axis (c) both (d) none
    Answer: (b)
  5. The graph represents:
    (a) vertical line x=4 (b) horizontal line y=4 (c) slant line (d) none
    Answer: (a)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top